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Abstract — We address the combinatorial optimisation problem 

(COP) of computing a fundamental cycle basis (FCB) of 

minimum length in a connected graph, the length being the sum 

of the number of arcs of the cycles of the FCB. This COP being 

NP-hard, we propose a three-phase heuristic for computing an 

approximate solution. The first phase is constructive and consists 

in computing an initial FCB. The second is an improving 

iterative procedure permitting to reduce the length of the former 

FCB and leading, in general, to a non fundamental cycle basis 

(NFCB), whereas the third phase consists in transforming the 

NFCB into a final FCB better than the initial one. In order to 

validate our theoretical contribution, we present an experimental 

study achieved on a series of random, benchmark and real 

graphs. 

Keywords — COP, cotree, fundamental cycle basis, graph, 

heuristic, NP-hard, performance, spanning tree

I. INTRODUCTION – DEFINITIONS AND 

A. Definitions 

We begin by introducing some useful definitions. Let � � ��, �� be a simple connected graph, involving 

(nodes) and � edges (arcs). Let 	 be a cycle of G and 

representing vector i.e. a vector of m elements where element 
 �
 � 1 … �� is equal to 1 (resp. 0) if arc 

A cycle basis (CB) is a minimum number of independant 

cycles, denoted �	�, 	�, … , 	��  [10], �
cyclomatic number i.e. � � � � � � 1, such that any cycle 

representing vector 	 can be expressed as follows	� � ��	������ � � � ��	������ 
A spanning tree (ST) of a given graph G, denoted 

spanning subgraph of G, tree-structured and involving the 

nodes of G hence has � � 1 arcs. The remaining c arcs of G 

are called chords and constitute the corresponding cotree 

denoted GCT. A fundamental cycle (FC) according to G

cycle obtained by adding a chord to GST. A fundamental cycle 

basis (FCB) associated to GST is constituted

corresponding FC’s. Remark that when G is connected, by 

successively introducing the c chords of GCT

the c cycles of the associated FCB. 

As a consequence, a cycle basis � �
called fundamental if and only if there exists no cycle of the 

basis whose arcs belong both to other cycles of the basis 

This theorem may expressed by the following formulae. 
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 BRIEF SURVEY 

We begin by introducing some useful definitions. Let 

be a simple connected graph, involving � vertices 

be a cycle of G and 	� its 

representing vector i.e. a vector of m elements where element 

 of G belongs to 	. 

A cycle basis (CB) is a minimum number of independant 

 being the graph 

, such that any cycle 

can be expressed as follows :  

 
A spanning tree (ST) of a given graph G, denoted GST, is a 

structured and involving the � 

arcs. The remaining c arcs of G 

are called chords and constitute the corresponding cotree 

. A fundamental cycle (FC) according to GST is a 

. A fundamental cycle 

is constituted by all the � 

corresponding FC’s. Remark that when G is connected, by 

CT to GST, we create 

� �	�, 	�, … , 	��  is 

there exists no cycle of the 

basis whose arcs belong both to other cycles of the basis [19]. 

This theorem may expressed by the following formulae.  

� 	� � �   	�  !  
"

An illustrative example is depicted below for a graph where � � 6 , � � 9 , � � 4  (straight (resp. dashed) line arcs 

constitute a spanning tree (resp. a cotree)).

 

Fig. 1 FCB 1, length=17

Fig. 2 FCB 2, length = 13

Fig. 3 NFCB, length = 12

B. Brief survey 

A cycle basis may in fact be seen as a compact description 

of all the cycles in a graph. That is why the NP

[7] of the determination of an FCB of minimal length (FCBM) 

has many practical applications e.g. in network verification 

(since Kirchhoff in the 19
th

 century), minimal and perfect 

hashing functions generation (used in compiler design), 

periodic scheduling, planification of complex synthesis in 

organic chemistry, graph drawing, surface construction… 

[14][21].  

It has to be noticed that the 

many researchers since the sixties of the previous century. In 

this context, four main research axes may be considered:

• Constructive heuristics 
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FCB 1, length=17 

 
FCB 2, length = 13 

 
NFCB, length = 12 

A cycle basis may in fact be seen as a compact description 

of all the cycles in a graph. That is why the NP-hard problem 

of the determination of an FCB of minimal length (FCBM) 

has many practical applications e.g. in network verification 

century), minimal and perfect 

hashing functions generation (used in compiler design), 

periodic scheduling, planification of complex synthesis in 

organic chemistry, graph drawing, surface construction… 

 FCBM problem has interested 

many researchers since the sixties of the previous century. In 

this context, four main research axes may be considered: 
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• Improving iterative heuristics 

• Formulation of the FCBM as an integer programming 

problem 

• Computing lower bounds for the length of an FCBM.

The general approach mostly adopted for solving the 

problem we address consists in constructing a particular 

spanning tree minimising the length of the corresponding FCB. 

The basic idea is a judicious node-arc sorting during the ST 

construction. For this purpose, several search strategies are 

known in the literature i.e. largest first [17]

[20] or hybrid [9]. One or more sorting criteria are then used 

e.g. only one such as in SDS, DDS, UE and MBFS 

successive criteria when two or more candidates are equal 

according to the first criterion such as in ELAP 

We also find specific rankings such as  UV2 and NT 

C-Order [2]. 

Another idea consists, once a FCB of a given length is 

constructed, in introducing successive modifications in this 

FCB in order to obtain another FCB of smaller length. 

the first iterative improving heuristic (IIH), called 

Search was designed [1]. As a matter of fact, several previous 

works are known in the literature, however the cycle bases 

they obtain, even of reduced lengths when compared to the 

initial FCB, are non fundamental in general 

Therefore, a simple and logical idea consists in starting 

from a non fundamental cycle basis (NFCB) of reduced length, 

then “fundamentalising” it i.e. transforming it into an FCB, 

even if it requires increasing the length. 

The remainder of the paper is organised as follows. In 

section 2, we describe our three-phase approach for 

constructing an FCB of reduced length. Section 3 is devoted 

to an experimental study validating our contribution and 

achieved on a three graph sets : random, benchmark and real. 

Finally, we conclude our paper in section 4 and present some 

further perspectives. 

II. THREE-PHASE FCB CONSTRUCTING

A. Basic idea 

The idea we adopted for constructing an FCB of reduced 

length consists in a three-phase procedure

constructive heuristic (CH) for the determination of an initial 

FCB ; (ii) using an iterative improving heuristic (IIH) for the 

determination of a cycle basis (non fundamental in general) of 

smaller length ; and (iii) using a “fundamentalising

(ARTF) transforming the latter into an FCB. This approach is 

depicted below. 

Fig. 4 Three-phase approach 
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Formulation of the FCBM as an integer programming 

Computing lower bounds for the length of an FCBM. 

The general approach mostly adopted for solving the 

problem we address consists in constructing a particular 

spanning tree minimising the length of the corresponding FCB.  

arc sorting during the ST 

construction. For this purpose, several search strategies are 

[17][13][5], depth first 

. One or more sorting criteria are then used 

g. only one such as in SDS, DDS, UE and MBFS [7], two 

successive criteria when two or more candidates are equal 

according to the first criterion such as in ELAP [8] and UV [4]. 

We also find specific rankings such as  UV2 and NT [6] or the 

her idea consists, once a FCB of a given length is 

constructed, in introducing successive modifications in this 

FCB in order to obtain another FCB of smaller length. In 2004, 

the first iterative improving heuristic (IIH), called Local 

As a matter of fact, several previous 

works are known in the literature, however the cycle bases 

they obtain, even of reduced lengths when compared to the 

initial FCB, are non fundamental in general [12].  

Therefore, a simple and logical idea consists in starting 

from a non fundamental cycle basis (NFCB) of reduced length, 

” it i.e. transforming it into an FCB, 

anised as follows. In 

phase approach for 

an FCB of reduced length. Section 3 is devoted 

to an experimental study validating our contribution and 

achieved on a three graph sets : random, benchmark and real. 

lly, we conclude our paper in section 4 and present some 

CONSTRUCTING APPROACH 

The idea we adopted for constructing an FCB of reduced 

phase procedure i.e. (i) using a 

heuristic (CH) for the determination of an initial 

; (ii) using an iterative improving heuristic (IIH) for the 

determination of a cycle basis (non fundamental in general) of 

fundamentalising” heuristic 

rming the latter into an FCB. This approach is 

 

 

B. Phase 1 : Initial FCB construction

The constructive heuristics known in the literature 

generally involve two steps i.e. constructing a 

then the associated FCB. 

1) Spanning tree construction

complexity/solution quality ratio, we adopted here the choice 

of [1] which adapted the approach described in 

The constructing ST heuristic scans the nodes of t

graph in a precise order. Indeed, for a given node u, its 

neighbours are first examinated. Then follows a discussion on 

the different cases that may occur i.e. either they belong or not 

to the list of already visited nodes. This is done in order t

know either a considered arc (u,v) creates or not a cycle when 

adding it to the already constructed partial spanning tree.

We can distinguish here four possible cases:

(i) None of the two nodes has been visited.

(ii) Only one node has been visited. 

(iii) The two nodes have been visited but both do not 

belong to the same connected component (of the partial 

spanning tree constructed so far).

 The two nodes have been visited and both belong to the 

same connected component (of the partial spanning tree 

constructed so far). In such case, 

Since, for any graph, we have deg�1� is he degree of node v, we can deduce that such an 

algorithm has an 2��� complexity. 

For the node visiting order, we used in fact both the node 

degree decreasing order (DEC) and ELAP (

lookahead principle) heuristic proposed in 

second criterion to choose between nodes having the same 

degree. 

2) FCB construction: Constructing an FCB, once an ST is 

determined, consists as previously precised in successively 

introducing the chords and determining the cycle induced by 

each chord. Here, for each chord, one has to scan all arcs 

incident to one node of the chord, then st

search restricted on these arcs until getting a positive response 

i.e. a cycle terminating at the other node of the chord.

We may see that in the worst case the search procedure 

may scan all the ST thus the n nodes. Having to look at 

arc incident to each node of the chord, we deduce that the 

overall complexity is 2��� in the worst case.

C. Phase 2 : Improving iterative heuristic (IIH)

Concerning the improving iterative heuristic (IIH), we used 

the one proposed in [12][16] and base

combinations of the cycles. It permits to reduce the length of 

the cycle basis but does not guarantee that it is an FCB. This 

procedure is described below.  

Let �� and �' be two cycles whose lengths are denoted 3' . We define their logical combination, denoted 

follows : ��' � � � 4 �' ! � � 5 �
We then eliminate among ��

largest length as follows : 
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neighbours are first examinated. Then follows a discussion on 

the different cases that may occur i.e. either they belong or not 

to the list of already visited nodes. This is done in order to 

know either a considered arc (u,v) creates or not a cycle when 

adding it to the already constructed partial spanning tree. 

We can distinguish here four possible cases: 

None of the two nodes has been visited. 

Only one node has been visited.  

have been visited but both do not 

belong to the same connected component (of the partial 

spanning tree constructed so far). 

The two nodes have been visited and both belong to the 

same connected component (of the partial spanning tree 

In such case, �6, 1� is a chord. 

Since, for any graph, we have ∑ deg�1� 8�9 � 2�  where 

is he degree of node v, we can deduce that such an 

complexity.  

For the node visiting order, we used in fact both the node 

order (DEC) and ELAP (One step at a time 

) heuristic proposed in [8] which defines a 

second criterion to choose between nodes having the same 

Constructing an FCB, once an ST is 

determined, consists as previously precised in successively 

introducing the chords and determining the cycle induced by 

each chord. Here, for each chord, one has to scan all arcs 

incident to one node of the chord, then starting a depth first 

search restricted on these arcs until getting a positive response 

i.e. a cycle terminating at the other node of the chord.  

We may see that in the worst case the search procedure 

may scan all the ST thus the n nodes. Having to look at every 

arc incident to each node of the chord, we deduce that the 

in the worst case. 

: Improving iterative heuristic (IIH) 

Concerning the improving iterative heuristic (IIH), we used 

and based on successive logical 

combinations of the cycles. It permits to reduce the length of 

the cycle basis but does not guarantee that it is an FCB. This 

 

be two cycles whose lengths are denoted 3�, 
fine their logical combination, denoted ��' , as 

�' whose length is 3�' 

, �', and ��' the cycle with the 
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; < 3� = 3'>�?3�' @ 3'
A BCD� <�' E �>�?3' E 3


; < 3� F 3'>�?3�' @ 3�
A  BCD� <�� E �>�?3� E 3

This procedure is iterated as long as it permits to reduce the 

length of the cycle basis. However, the combination process 

does not guarantee that the new obtained c

elementary one i.e. it may be constituted by two disjoint 

elementary cycles. But, if the resulting cycle is not an 

elementary one, its length will necessarily be larger than those 

of the two input cycles. Therefore it will be rejected. 

is not use checking the elementarity property.

As to the complexity of the whole procedure, we can see 

that combining two cycles costs 2�1� since cycle lengths are 

negligible relatively to �. Hence we get an 

for IIH. 

D. ‘Fundamentality’ verifying 

We based the procedure that verifies whether the cycle 

basis (CB) obtained after applying IIH is 

fundamental or not on the theorem seen above 

CB is fundamental if and only if there exists no cycle of the 

basis whose arcs belong to other cycles of the basis. In other 

words, we have to find for each cycle of the CB an exclusive 

arc i.e. that belongs to no other cycle. This exclusive arc wi

correspond to a chord. If this is not possible, the CB will be 

considered non fundamental. 

Therefore the fundamentality verifying algorithm (FVA) 

we designed is as follows : 

• Step 1. Arc extraction : extract from each cycle its 

exclusive arcs (each exclusive arc may play the role of a 

chord) 

• Step 2. Chord choice : choose for each cycle one 

exclusive arc from the set of its own exclusive arcs.

By this way we’ll have a chord for every fundamental cycle 

belonging to the CB. Hence, the CB will be an FCB 

only if the number of candidate chords is equal to � � 1 i.e. the cyclomatic number of the graph if is connected. 

As to the complexity of FVA, choosing a particular data 

structure for the input graph permits to execute step 1 in 

time in the worst case (see section 3 below). As to step 2, it 

costs 2����. Therefore the overall complexity is 2��G� (resp. 2����) for a dense (resp. sparse) graph for which � � 2���� (resp. � � 2���).  

Remark that an alternative FVA (AFVA) involving only 

one step (by merging steps 1 and 2) may be designed. In this 

case, its complexity will be 2���� i.e. 2�
for a dense (resp. sparse) graph for which � � 2����  (resp. � � 2���  and � � 2��
proceeding in two steps for practical implementation reasons.
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This procedure is iterated as long as it permits to reduce the 

length of the cycle basis. However, the combination process 

does not guarantee that the new obtained cycle (��' ) is an 

elementary one i.e. it may be constituted by two disjoint 

f the resulting cycle is not an 

elementary one, its length will necessarily be larger than those 

of the two input cycles. Therefore it will be rejected. Hence it 

property. 

As to the complexity of the whole procedure, we can see � since cycle lengths are 

. Hence we get an 2���� complexity 

We based the procedure that verifies whether the cycle 

fundamental or not on the theorem seen above [19] i.e. a 

CB is fundamental if and only if there exists no cycle of the 

basis whose arcs belong to other cycles of the basis. In other 

words, we have to find for each cycle of the CB an exclusive 

This exclusive arc will 

If this is not possible, the CB will be 

verifying algorithm (FVA) 

: extract from each cycle its 

exclusive arc may play the role of a 

: choose for each cycle one 

exclusive arc from the set of its own exclusive arcs. 

By this way we’ll have a chord for every fundamental cycle 

belonging to the CB. Hence, the CB will be an FCB if and 

only if the number of candidate chords is equal to � � � �
i.e. the cyclomatic number of the graph if is connected.  

As to the complexity of FVA, choosing a particular data 

structure for the input graph permits to execute step 1 in 2��� 

the worst case (see section 3 below). As to step 2, it 

. Therefore the overall complexity is 2���� i.e. 

) for a dense (resp. sparse) graph for which 

Remark that an alternative FVA (AFVA) involving only 

one step (by merging steps 1 and 2) may be designed. In this ��G� (resp. 2����)  

for a dense (resp. sparse) graph for which � � 2����  and �� ). We preferred 

proceeding in two steps for practical implementation reasons. 

E. Phase 3 : Transforming a CB into an FCB

Disposing of both a spanning tree (ST) and its associated 

FCB on which we applied the IIH leading to a cycle ba

has been proved non fundamental. The following phase 

consists in transforming the latter into an FCB. The 

transformation procedure (TP) is depicted below.

Fig. 5 ARTF Scheme

After applying the previous FVA, the cycles of 

may be partitioned into two sets where the first (resp. second) 

involves any cycle that has one (resp. no) exclusive arc. A 

cycle of the first set will be called fundamental.

In order to illustrate our procedure, let us revisit the 

example of figure 3 and depict the cycle partitioning (see 

figures 6 and 7, where straight lines correspond 

coloured arcs, dashed lines to blue coloured arcs and dotted 

lines to black coloured arcs). 

Fig. 6 Non FCB Partitioning

We can remark that the fundamental cycles I, II and IV are 

each constituted by branch arcs (in green) and an exclusive 

chord (in blue). On the other hand, any arc of the non 

fundamental cycle III belongs to another cycle. Hence we 

decide to keep portions (arcs) that will be used to construct the 

complete spanning tree. This latter will involve a subset of the 

branch arcs belonging to the fundamental cycles. This subset 

will be augmented by introducing other arcs in order to 

connect its previous ones and hen

spanning tree. 

To be more precise, we proceed as follows.

(a) Given a CB decomposed into fundamental and non 

fundamental cycles, we first collect the informations retrieved 

on all different cycles i.e. arc types

non fondamental arc (i.e. arc belonging to a non fundamental 

cycle). Note that we do not consider as a branch any green 

coloured arc belonging to both a fundamental cycle and a non 

fundamental one. The subset of all nfa’s will cons

subgraph to be processed. Figure 7 describes the 

decomposition procedure. 
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After applying the previous FVA, the cycles of the basis 

may be partitioned into two sets where the first (resp. second) 
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Non FCB Partitioning 

We can remark that the fundamental cycles I, II and IV are 

each constituted by branch arcs (in green) and an exclusive 

chord (in blue). On the other hand, any arc of the non 

fundamental cycle III belongs to another cycle. Hence we 

arcs) that will be used to construct the 

complete spanning tree. This latter will involve a subset of the 

branch arcs belonging to the fundamental cycles. This subset 

will be augmented by introducing other arcs in order to 

connect its previous ones and hence construct a complete 

To be more precise, we proceed as follows. 

Given a CB decomposed into fundamental and non 

fundamental cycles, we first collect the informations retrieved 

on all different cycles i.e. arc types: either branch, chord or 

arc (i.e. arc belonging to a non fundamental 

cycle). Note that we do not consider as a branch any green 

coloured arc belonging to both a fundamental cycle and a non 

fundamental one. The subset of all nfa’s will constitute the 

subgraph to be processed. Figure 7 describes the 
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Fig. 7 Arc colouring Procedure (branchs in green, chords in blue, nfa’s in 

black) 

(b) We check whether our graph is constituted by 

different subgraphs among which we can distinguish those 

who have not yet been processed (i.e. those involving nfa’s). 

A local constructive heuristics is used here. Indeed, in not 

considering the parts composed of chords or branchs, we 

obtain a subgraph (that may be non connected) for which we 

are constructing a spanning tree.  

The whole fundamentalisation heuristic, called ARTF, is 

detailed below. 

• Step 1. Decompose the CB into fundamental and non 

fundamental cycles 

• Step 2. Colour all the arcs of the graph in red

• Step 3. Colour the arcs belonging to fundamental 

cycles : green for branchs, blue for chords 

• Step 4. Colour the nfa’s in black (regardless of their 

previous colour) 

• Step 5. Constitute the partial spanning tree (PST) 

involving green arcs 

• Step 6. Add to the PST arc bridges (i.e. arcs belonging 

to no cycle) red coloured. Update the PST connected 

components 

• Step 7. Extract the nodes that will be processed by CH. 

Sort them according to a determined key corresponding to 

their relative degrees computed in terms o

processed arcs (black coloured).  

• Step 8. Apply the local CH with its two variants. 

It is easy to see that the overall complexity is 2���  since � � 2��� . We have to add that once this 

procedure achieved, will have to construct the n

recapitulate in the following our three

complexity: 

Table 1 Complexity of the three-phase approach

CH 
IIH FVA 

ST Calculate_cycles ARTF2��� 2���� 2���� 2���� 2��
III. EXPERIMENTAL STUDY

In order to validate our theoretical contribution, we present 

in this section an experimental study achieved on a series of 

random, benchmark and real graphs. We precise that we 

coded our algorithms in C++ under Linux, using STL and 

Boost libraries [18]. The target machine is a Lenovo Thinkpad 

(i5, 2.40 GHz clock, 4 GB RAM). We have to mention that 

we used the data structure Adjacency_list

representation and two particular others for cycle 

representation as follows :  
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. We have to add that once this 

procedure achieved, will have to construct the new FCB. We 
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ARTF Calculate_cycles ��� 2���� 

XPERIMENTAL STUDY 

In order to validate our theoretical contribution, we present 

in this section an experimental study achieved on a series of 

random, benchmark and real graphs. We precise that we 

coded our algorithms in C++ under Linux, using STL and 

he target machine is a Lenovo Thinkpad 

We have to mention that 

Adjacency_list, for graph 

representation and two particular others for cycle 

• cycles : each cycle is repre

its arcs  

• e_cycles : each arc of the graph is represented by the 

list of the cycles it belongs to.

We’ll mention in the following the lengths of the CB’s 

obtained by the two approaches (the first using decreasing sort 

(DEC), the second is Edyhazy’s special sort (ELAP)) We’ll 

also give the lengths after each phase (CH, IIH, ARTF).

A. Random graphs 

A set of 16 random graphs was generated with Boost 

generator. This latter permits to generate graphs according to 

Erdös & Rényi model [11]. In this model, a graph is denoted � �  ��, H� . Each of the ���
probability H (in I0 1J) to exist. We precise that the generated 

graph is connected, non oriented and has no loops nor 

multiple arcs. Four values for �
and 4 for  �0.2, 0.4, 0.6, 0.8�. The following table depicts for 

each graph the length of the constructed FCB obtained at each 

phase of the approach. 

Table 2 FCB Lengths for Random Graphs

M N O P 
CH  

(DEC) 
IIH

10 0.2 12 3 9 9

10 0.4 19 10 33 30

10 0.6 27 18 63 56

10 0.8 29 20 66 61

20 0.2 37 18 70 59

20 0.4 77 58 215 186

20 0.6 116 97 323 304

20 0.8 123 104 373 325

30 0.2 97 68 239 220

30 0.4 149 120 421 377

30 0.6 241 212 787 653

30 0.8 282 253 870 791

40 0.2 140 101 369 320

40 0.4 302 263 925 830

40 0.6 465 426 1466 1319

40 0.8 511 472 1732 1454

We remark that the approach using ELAP sorting 

outperforms the others. Indeed, it is the best 14 times out of 16 

i.e. 87.5 % times and is exclusively the best 8 times, whereas 

the approach based on decreasing sorting (DEC) is the best 

only 8 times (50%). It shares the first rank with the former 5 

times and is exclusively the best 2 times. On the other hand, 

ARTF-ELAP (resp. ARTF DEC) could improve the initial 

FCB length 11 times (resp. 9 times).

B. Benchmark graphs 

We choosed here square grid graphs which are considered 

as the most rigorous benchmark graphs for testing FCBM 

solving heuristics [15]. This is due to their symmetric 

properties.  

We precise that a ��Q, Q� grid is the cartesian product of 

two chains, a vertical and a horizontal one, each of which 

involves Q  nodes and Q � 1� � Q�  nodes, � � 2Q�Q �� � �Q � 1�� � � � 2√� � 1. On the oth

that the length of an optimal FCB is known as well as its 

structure, but no algorithm permitting to construct it is known 

so far [15]. Indeed, a ��Q, Q�
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: each cycle is represented by a dynamic list of 

: each arc of the graph is represented by the 

list of the cycles it belongs to. 

We’ll mention in the following the lengths of the CB’s 

obtained by the two approaches (the first using decreasing sort 

second is Edyhazy’s special sort (ELAP)) We’ll 

also give the lengths after each phase (CH, IIH, ARTF). 

A set of 16 random graphs was generated with Boost 

This latter permits to generate graphs according to 

. In this model, a graph is denoted � � 1�/2  possible arcs has a 

) to exist. We precise that the generated 

graph is connected, non oriented and has no loops nor � were chosen �10, 20, 30, 40� 

. The following table depicts for 

each graph the length of the constructed FCB obtained at each 

FCB Lengths for Random Graphs 

IIH 
ARTF  

(DEC) 

CH 

(ELAP) 
IIH 

ARTF  

(ELAP) 

 - 9 9 - 

30 31 33 30 33 

56 63 63 57 62 

61 65 66 61 64 

59 65 70 59 62 

186 202 202 186 197 

304 323 327 304 327 

325 371 373 325 363 

220 239 241 219 239 

377 413 430 378 413 

653 779 779 656 779 

791 870 866 790 866 

320 352 365 321 352 

830 904 925 831 904 

1319 1466 1427 1315 1425 

1454 1732 1734 1449 1728 

We remark that the approach using ELAP sorting 

outperforms the others. Indeed, it is the best 14 times out of 16 

times and is exclusively the best 8 times, whereas 

the approach based on decreasing sorting (DEC) is the best 

only 8 times (50%). It shares the first rank with the former 5 

times and is exclusively the best 2 times. On the other hand, 

F DEC) could improve the initial 

FCB length 11 times (resp. 9 times). 

We choosed here square grid graphs which are considered 

as the most rigorous benchmark graphs for testing FCBM 

. This is due to their symmetric 

grid is the cartesian product of 

two chains, a vertical and a horizontal one, each of which 1  arcs. Hence, ��Q, Q�  has � � 1� � 2� � 2√�  arcs and 

. On the other hand, we precise 

that the length of an optimal FCB is known as well as its 

structure, but no algorithm permitting to construct it is known � grid has an optimal FCB of 
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length 3U � 6� � 20√� � 22  for Q F 3 . Remark that an 

obvious optimal non fundamental cycle basis (NFCB) 

constituted by the �Q � 1��  square cycles is of length 3VWX � 4� � 4�Q � 1�� � 4� � 8√� � 4. 

We used for our experiments 4 values of Q i.e. 5, 7, 10, 15. 

We precise that NT corresponds to the so called heuristic 

‘NonTree Egdes’ [6]. 

Table 3 FCB Lengths for Grid Graphs 

[ M O P 

\ 

NT CH 

(DEC) 

HC 

(ELAP) 

 

HIA 

ARTF 

(DEC) 

ARTF 

(ELAP) 

5 25 40 16 76 72 64 72* 72* 78 

7 49 84 36 224 184 144 188 184 196 

10 100 180 81 716 508 324 572 492 518 

15 225 420 196 2656 1848 784 2172 1652 1588 

Table 4 FCB Ratios for Grid Graphs 

[ M O P 
\U  

(FCB) 

\]N^ 

(NFCB) 

 

Ratio (%) \�_`ab�  �  \U\U  

Ratio (%)          \�cd� – \�_`ab�\�cd�   
5 25 40 16 72 64 0 0 

7 49 84 36 176 144 4.5 0 

10 100 180 81 422 324 16.5 3.1 

15 225 420 196 1072 784 54.1 10.6 

We remark that (i) CH-ELAP is always first ranked, (ii) IIH 

could reach the lower bound \]N^ of a NFCB for any input CB 

i.e. the CB obtained by CH(DEC) or CH(ELAP). As to ARTF, 

ARTF-ELAP is the best as already seen for random graphs. 

However, the version using decreasing sorting (DEC) is the 

first one time. We can also notice that the difference as well 

the ratio between the obtained and optimal lengths (i.e \ � \U 

and �\ � \U� \U⁄  increase with [ (hence M). However, they 

are smaller than those corresponding to CH. Let us add that 

the ratio corresponding to the improvement obtained by 

applying IIH as well as ARTF increases with [ hence M. 

When comparing our results to those obtained by one 

among the best known heuristics for grid graphs i.e. NT [6], 

we notice that ARTF-ELAP outperforms NT 3 times. 

C. Real graphs 

The third graph set involves 11 real graphs corresponding 

to water supply networks [3] as follows : (i) 4 graphs of 

Tunisian cities (Testour, Medjez el beb, Chebba and Tunis) ; 

(ii) 1 graph of a Danish city ; (iii) 1 graph of the Vietnamese 

city of Hanoi (Triple Hanoi) ; 2 graphs of South Korean cities 

(Bak Ryun and GoYang) ; and (iv) 3 graphs of unknown 

locations (Boss1, Boss2 and Boss3). 

Table 5 FCB Lengths for Real Graphs 

Graph M O P 
CH 

(DEC) 
IIH 

ARTF 

(DEC) 

CH 

(ELAP) 

II

H 

ARTF 

(ELAP) 

Testour 12 16 5 22 19 - 24 19 - 

Medjez 

el beb 
26 34 9 40 38 - 38 38 - 

Chebba 36 49 14 79 64 71 87 64 68 

Tunis 86 137 52 352 245 302 336 246 303 

Denmark 172 200 29 127 116 - 131 114 116 

Triple 

Hanoi 
92 100 9 117 99 - 108 99 - 

BakRyun 36 52 17 102 80 89 98 82 87 

GoYang 23 31 9 40 38 - 41 38 - 

Boss1 128 147 20 126 119 - 127 119 - 

Boss2 122 149 28 189 164 170 178 164 170 

Boss3 173 249 77 707 403 600 522 394 513 

The results we obtained confirm the previous ones. Indeed, 

the approach using ELAP outperforms the one using 

Decreasing sort since it is first ranked 10 times i.e. 90.9% 

whereas the other is first ranked 8 times i.e. 72.7%. However, 

we can remark that for this set of real graphs, IIH kept 

sometimes the ‘fundamentality’ (6 times out of 11 for DEC 

and 5 times for ELAP). This thus justify our choice consisting 

in first constructing an FCB then improve it instead of starting 

from a good quality non FCB then ‘fundamentalising’ it. 

IV. CONCLUSION & PERSPECTIVES 

Through our contribution presented in this paper, we could 

design a new approach for constructing an FCB of reduced 

length, based on first the conjunction of constructive and 

iterative improving heuristics. Since this may lead in general 

to a non FCB, we designed an ultimate ‘fundamentalising’ 

phase corresponding to two algorithms, the first being based 

on a theorem due to Syslo [19] and the second capable to 

‘fundamentalise’ any non FCB. A series of experiments led to 

some satisfactory practical results. However, we can deduce 

some interesting points that would be studied in the future. 

We may cite the following :  

• Improve the efficiency of IIH 

• Apply directly ARTF on an optimal (non fundamental) 

cycle basis 

• Experiment our approach on other ‘tough’ benchmark 

graphs such as triangular graphs (see a sample in Figure 1)  

Design efficient parallel algorithms for solving the 

addressed problem (we already achieved a study on this point 

but it deserves more deepening and experiments) 
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